Disiloxanes and Functionalized Silica Gels: One Route, Two Complementary Outcomes—Guanidinium and Pyridinium Ion-Exchangers
نویسندگان
چکیده
Five novel disiloxane compounds comprising guanidinium and pyridinium moieties were obtained with high yields and purity. The verified synthetic pathways were then applied for modification of pre-functionalized silica gel, producing materials with the analogous organic side-chains. These halide-containing compounds and materials were then compared as to their ion-exchange properties: two disiloxanes proved to be effective in leaching different anions (nitrate, benzoate and ascorbate) from solid to organic phase, and pyridinium-functionalized silica gels showed selectivity towards perchlorate ion, removing it from methanolic solutions with preference to other singly charged anions. The results presented demonstrate that both compounds and materials containing silicon-carbon bonds can be produced using the same methodology, but offer strikingly different application opportunities. Comparison of their properties provides additional insight into the binding mode of different anions and hints at how the transition from a flexible siloxane bridge to immobilization on solid surface influences anion-binding selectivity. Additionally, one of the siloxane dipodands was found to form a crystalline and poorly soluble nitrate salt (1.316 g/L, water), although it was miscible with a wide range of solvents as a hydrochloride. A possible explanation is given with the help of semi-empirical calculations. A simple, time- and cost-efficient automated potentiometric titration methodology was used as a viable analytical tool for studying ion-exchange processes for both compounds and materials, in addition to standard NMR, FT-IR and ESI-MS methods.
منابع مشابه
High Performance Nanocomposite Cation Exchange Membrane: Effects of Functionalized Silica-Coated Magnetic Nanoparticles
Nanocomposite cation exchange membranes (CEMs) were prepared by adding various amounts of functionalized silica-coated magnetite nanoparticles to the sulfonated polyethersulfone (sPES) polymeric matrix. The particles were synthesized first by the co-precipitation method (M0). Different surface modifications were then carried out on them by grafting three functional groups of mercaptopropyl, pro...
متن کاملFast Monitoring of the Phosphate Ions at Sub-mg L level with the Aim of Diamine-grafted MCM-41 Mesoporous silica and Ion Chromatography
In this work, an innovative method is described for the preconcentration of phosphate ions using ethylenediamine functionalized mesopor (MCM-41). Functionalized MCM-41 was synthesized and the presence of organic groups in the silica framework was demonstrated by FTIR spectrum. The amount of organic groups immobilized on silica surface was determined by elemental analysis and TGA. The functi...
متن کاملAn efficient green synthesis of some new 4H-pyrimido[2,1,b]benzimiazoles and 4H-pyrimido[2,1,b]benzothiazoles promoted by guanidinium chloride
A facile and highly efficient protocol was applied successfully to synthesize 4H-pyrimido[2,1,b]benzimiazoles and 4H-pyrimido[2,1,b]benzothiazoles through one-pot three-component cyclocondensation reactions of 2-aminobenzimidazole or 2-aminobenzothiazole with dimedone and aromatic aldehydes in the presence of guanidinium chloride under solvent-free conditions. The reactions us...
متن کاملAlkyl surface modification of nanoporous silica SBA-15 by click chemistry to obtain triazole products
In this study, Santa Barbara Amorphous (SBA-15) mesoporous silica has been functionalized with aminopropyl groups that were converted to propargyl-bearing moieties through the reaction with propargyl bromide. The material then underwent an efficient Cu(I)-catalyzed azide alkyne click reaction with sodium azide in order to obtain the corresponding triazole products. The covalent modification of ...
متن کاملAlkyl surface modification of nanoporous silica SBA-15 by click chemistry to obtain triazole products
In this study, Santa Barbara Amorphous (SBA-15) mesoporous silica has been functionalized with aminopropyl groups that were converted to propargyl-bearing moieties through the reaction with propargyl bromide. The material then underwent an efficient Cu(I)-catalyzed azide alkyne click reaction with sodium azide in order to obtain the corresponding triazole products. The covalent modification of ...
متن کامل